skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schlüter, Maja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. In this paper we extend the use of a relational approach to simulation modelling, a widely used knowledge practice in sustainability science. Among modellers, there is awareness that model results can only be interpreted in view of the assumptions that inform model construction and analysis, but less systematic questioning of those assumptions. Moreover, current methodological discussions tend to focus on integrating social and ecological dynamics or diverse knowledges and data within a model. Yet choices regarding types of modelling, model structure, data handling, interpretation of results and model validation are not purely epistemic. They are entangled with values, contexts of production and use, power relations, and pragmatic considerations. Situated Modelling extends a relational understanding of the world to scientific knowledge production and with that to modelling itself in order to enable a systematic interrogation of these choices and to research social-ecological transformations relationally. To make tangible the situatedness of simulation modelling, we build on existing practices and describe the situatedness of three distinct modelling approaches. We then suggest four guiding principles for Situated Modelling: 1. attending to the apparatus of knowledge production that is socially and materially embedded and produced by e.g. research infrastructures, power relations, and ways of thinking; 2. considering how agency is distributed between model, world, data, modeller in model construction; 3. creating heterogenous collectives which together occupy the formerly individualised subject position; and 4. using agonism as an epistemic virtue to retain and work with significant differentiations of social-ecological dynamics throughout the modelling process. 
    more » « less
  3. Scientists seek to understand the causal processes that generate sustainability problems and determine effective solutions. Yet, causal inquiry in nature–society systems is hampered by conceptual and methodological challenges that arise from nature–society interdependencies and the complex dynamics they create. Here, we demonstrate how sustainability scientists can address these challenges and make more robust causal claims through better integration between empirical analyses and process- or agent-based modeling. To illustrate how these different epistemological traditions can be integrated, we present four studies of air pollution regulation, natural resource management, and the spread of COVID-19. The studies show how integration can improve empirical estimates of causal effects, inform future research designs and data collection, enhance understanding of the complex dynamics that underlie observed temporal patterns, and elucidate causal mechanisms and the contexts in which they operate. These advances in causal understanding can help sustainability scientists develop better theories of phenomena where social and ecological processes are dynamically intertwined and prior causal knowledge and data are limited. The improved causal understanding also enhances governance by helping scientists and practitioners choose among potential interventions, decide when and how the timing of an intervention matters, and anticipate unexpected outcomes. Methodological integration, however, requires skills and efforts of all involved to learn how members of the respective other tradition think and analyze nature–society systems. 
    more » « less